The mapping between the iteria are presented in three tables, one for the introductory seice introductory se

Table 1. Changes introduction, Including Definitions

Current Language	New Language
EAC Criteria effective 2017-18 and 201819 Cycles	Approved by the EAD October 20, 2017
	Applicable beginning in the 201920 cycle
These criteria are intended to assure quality and to foster the systemal These criteria apply to all accredited engineering programs.	
pursuitof improvement in the quality of engineering education that satisfies	
the needs of constituencies in a dynamic and competitive environment. It is	
the responsibility of the institution seeking accreditation of an engineering	
program to demonstrate clearhat the program meets the following	
criteria.	

Not explicitly defined in current criteria.	Complex Engineering Problem Complex engineering problems
	include one or more of the following characteristics: involving wide
	ranging or conflicting technical issues, having no obvious solution,
	addressing problems not encompassed by current standards and codes,
	involving diverse grops of stakeholders, including many component
	parts or sulproblems, involving multiple disciplines, or having
	significant consequences in a range of contexts.
From current Criterion 3, within realistic constraints such as econor	iEngineering Design Engineering design is a process of devising a
environmental, sociapolitical, ethical, health and safety.	system, component, or process to meet desi eeds and
manufacturability, and sustainability	specifications within constraints. It is an iterative, creative, decision
	making process in which the basic sciences, mathematics, and
From current Criterion 5: Engineering design is the process of devisin	⁹ engineering sciences are applied to convert resources into solutions.
system, component, or process to meet desired needs. It is a decision	Engineering design involves identifig opportunities, developing
making process (often iteraely, in which the basic sciences, mathematic	Srequirements, performing analysis and synthesis, generating multiple
and the engineering sciences are applied to convert resources optima	Stoutions, evaluating solutions against requirements, considering risks,
meet these stated needs.	and making tradeffs, for the purpose of obtaining a highality
	solution under the given circumstances. For illustrative purposes
	only, examples of possible constraints include accessibility, aesthetics,
	codes, constructability, cost, ergonomics, extensibility, functionality,
	interoperability, legal considerations, maintainability,
	manufacturability, marketability, policy, regulations, schedule,
	standards, sustainability, or usability.
Currently in Criterion 5: The engineering sciences have their roots in	Engineering Science Engineering sciences are based on mathema
mathematics and basic sciences but carry knowledge further toward c	and basic sciences but carry knowledge further towarative
application. These studies provide a bridge between mathematics and	papplication needed to solve engineering problems. These studies
sciences on the one hand and engineering practice on the other.	provide a bridge between mathematics and basic sciences on the one
······································	hand and engineering practice on the other.
Not explicitly defined in current criteria.	Team A team consists of more than one person working toward
	common goal and should include individuals of diverse backgrounds,
	skills, or perspectives.

Table 3. Changes in Criterion 5- Curriculum

Current Language EAC Criteria effective 2017-18 and 201819 Cycles New Language Approved by the EAD October 20, 201718 Applicable beginning in the 201920 cycle